Effect of Titanium Nitride (TiN) Nanoparticles on the Lubricity and Viscosity of Water-Based Drilling Fluid

Authors

DOI:

https://doi.org/10.31265/atnrs.772

Abstract

The effectiveness of the fluid's performance depends on the combined effect on its rheological, thermos-physical, chemical, and lubricity properties. In this paper, the effect of TiN nanoparticles on different properties of KCL-based water-based drilling fluid was evaluated. Results showed that the TiN nanoparticles among others increased the lubricity of the drilling fluid by 40% and reduced the filtrate loss by 9.8%. Moreover, the additive has shown an impact on the thermal, electrical conductivity, and rheological properties of the considered drilling fluid.

Author Biographies

Mesfin Belayneh Agonafir

Associate Professor
Faculty of Science and Technology
Department of Energy and Petroleum Engineering
University of Stavanger

Bernt Aadnøy

Faculty of Science and Technology
Department of Energy and Petroleum Engineering
University of Stavanger

Arild Saasen

Professor
Faculty of Science and Technology
Department of Energy and Petroleum Engineering
University of Stavanger

References

Wu, J. and Zhang, M. M. Casing Burst Strength After Casing Wear. SPE 94304. (2005)16-19 April, Oklahoma City, Oklahoma

https://doi.org/10.2523/94304-MS

Vu, T., Finite Element Method Simulation and Modelling of Tubing Wear. MSc Thesis, University of Stavanger, Norway, 2015

Nikka, P. Uniform Corrosion and Its Effect on Tubing Simulation Study. MSc Thesis, the University of Stavanger, Norway 2017

Jan, V. E. Analysis of the de-rated Burst and Collapse Resistance of a Locally Worn Tubing by using the Finite Element Method and API models./MSc Thesis University of Stavanger, 2017

Budi W. R. FEM Modelling and Simulation of Production Casing with Local Wear Damage MSc Thesis, University of Stavanger, 2018

Mesfin, B.; Vidar, J.; Vu, T. Effect of Wedge and Crescent Wear on Production Tubing Burst Pressure Rating. International journal of engineering research and technology ISSN 0974-3154. Volume 12. p.1544-1548

Abdo, J.; Haneef, M.D. Nanoparticles: Promising Solution to Overcome Stern Drilling Problems. Clean Technology 2010, ISBN 978-1-4398-3419-0.

Vryzas, Z.; Zaspalis, V.; Nalbantian, L.; Mahmoud, O.; Nasr-El-Din, H.A.; Kelessidis, V.C. A Comprehensive Approach for the Development of New Magnetite Nanoparticles Giving Smart Drilling Fluids with Superior Properties for HP/HT Applications, IPTC-18731-MS. Bangkok, Thailand, 14-16 November 2016.

https://doi.org/10.2523/18731-MS

Sadeghalvaad, M.; Sabbaghi, S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technol. 2015, 272, 113-119.

https://doi.org/10.1016/j.powtec.2014.11.032

Mohamadian, N.; Ghorbani, H.; Wood, D.A.; Khoshmardan, M.A. A hybrid nanocomposite of poly (styrene-methyl methacrylate-acrylic acid), clay as a novel rheology-improvement additive for drilling fluids. J. Polym. Res. 2019, 26, 33.

https://doi.org/10.1007/s10965-019-1696-6

Mohamud, O.; Mady, A.; Aftab, A. Al2O3 and CuO nanoparticles as promising additives to improve the properties of KCl‐polymer mud: An experimental investigation. Can. J. Chem. Eng. 2021, 1-14.

https://doi.org/10.1002/CJCE.24285/v1/review1

Mohamadian, N.; Ghorbani, H.; David, W.A.; Khoshmardan, M.A. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: An experimental study. Adv. Geo-Energy Res. 2018, 2, 228-236.

https://doi.org/10.26804/ager.2018.03.01

Sharma, M.M.; Zhang, R.; Chenevert, M.E.; Ji, L.; Guo, Q.; Friedheim, J. A new family of nanoparticle-based drilling fluids, SPE-160045-MS. San Antonio, TX, USA, 8-10 October 2012.

https://doi.org/10.2118/160045-MS

Hoelscher, KP; de Stefano, G.; Riley, M.; Young, S. Application of Nanotechnology in Drilling Fluids, SPE-157031-MS. In Proceedings of the SPE, Noordwijk, The Netherlands, June 12-14 2012.

https://doi.org/10.2118/157031-MS

Gao, C.; Miska, S.Z.; Yu, M.; Ozbayoglu, E.M.; Takach, N.E. Effective Enhancement of Wellbore Stability in Shales with New Families of Nanoparticles, SPE-180330-MS. Galveston, TX, USA, 14-15 September 2016.

https://doi.org/10.2118/180330-MS

Taha, N.M.; Lee, S. Nano Graphene Application Improving Drilling Fluids Performance, IPTC-18539-M. Doha, Qatar, 6-9 December 2015.

Awais, M.; Belayneh, M.; Saasen, A.; Fjelde, K.K.; Bernt; Aadnøy, S. Effect of MWCNT and MWCNT Functionalized -OH and -COOH Nanoparticles in Laboratory Water Based Drilling Fluid. Madrid, Spain, 17-22 June 2018.

Sabah, A.; Alswasiti, A.; Salam, M. Improving Drilling Fluid Properties at High-Pressure Conditions Using Selected Nanomaterials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 579, 012004.

https://doi.org/10.1088/1757-899X/579/1/012004

Nwaoii, C.O.; Hareland, G.; Husein, M.; Nygaard, R.; Zakaria, M.E., 2013//Wellbore strengthening-nano-particle drilling fluid. Experimental design using hydraulic fracture apparatus, SPE-163434. Amsterdam, The Netherlands, 5-7 March 2013.

https://doi.org/10.2118/163434-MS

Halali, M.A.; Ghotbi, C.; Tahmasbi, K.; Ghazanfari, M.H. The Role of Carbon Nanotubes in Improving Thermal Stability of Polymeric Fluids: Experimental and Modeling. Ind. Eng. Chem. Res. 2016, 55, 7514-7534.

https://doi.org/10.1021/acs.iecr.6b00784

William, J.K.M.; Ponmani, S.; Samuel, R.; Nagarajan, R.; Sangwai, J.S. Effect of CuO and ZnO nanofluids in Xanthan gum on thermal, electrical, and high-pressure rheology of water-based drilling fluids. J. Pet. Sci. Eng. 2014, 117, 15-27.

https://doi.org/10.1016/j.petrol.2014.03.005

Hassani, S.S.; Amrollahi, A.; Rashidi, A.; Soleymani, M.; Rayatdoost, S. The effect of nanoparticles on the heat transfer properties of drilling fluids. J. Pet. Sci. Eng. 2016, 146, 183-190.

https://doi.org/10.1016/j.petrol.2016.04.009

Fazelabdolabadi, B.; Khodadadi, A.A.; Sedaghatzadeh, M. Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes. Appl. Nanosci. 2015, 5, 651-659.

https://doi.org/10.1007/s13204-014-0359-5

Ponmani, S.; Nagarajan, R.; Sangwai, J.S. Effect of nanofluids of CuO and ZnO in polyethylene glycol and polyvinylpyrrolidone on the thermal, electrical, and filtration-loss properties of water-based drilling fluids. SPE J. 2016, 21, 405-415.

https://doi.org/10.2118/178919-PA

Boul, P.J; Reddy, B.R.; Zhang, J.; Thaemlitz, C. Functionalized nano silicas as shale inhibitors in water-based drilling fluids. SPE Drill. Completion 2017, 32, 121-130.

https://doi.org/10.2118/185950-PA

Kang, Y.; She, J.; Zhang, H.; You, L.; Song, M. Strengthening shale wellbore with silica nanoparticles drilling fluid. Petroleum 2016, 2, 189-195.

https://doi.org/10.1016/j.petlm.2016.03.005

Gotman, E.Y.; Gutmanas, G. H. Wear-Resistant Ceramic Films and Coatings. Comprehensive Volume 1, 2011, Pages 127-155

https://doi.org/10.1016/B978-0-08-055294-1.00019-2

Shtansky, D.V.; Levashov, E.A.; Sukhorukova, I.V. Multifunctional bioactive nanostructured films//Hydroxyapatite (Hap) for Biomedical Applications. Woodhead Publishing Series in Biomaterials 2015, Pages 159-188

https://doi.org/10.1016/B978-1-78242-033-0.00008-0

Herschel, W.H.; Bulkley, R. Konsistenzmessungen von gummi-benzöllösungen. Kolloid-Z 1926, 39, 291.

https://doi.org/10.1007/BF01432034

Zamora, M.; Power, D. Making a Case for AADE Hydraulics, and the Unified Rheological Model, AADE-02-DFWM-HO-13. Houston, TX, USA, 2-3 April 2002.

Saasen A.; Ytrehus, J.D. Rheological Properties of Drilling Fluids: Use of Dimensionless Shear Rates in Herschel-Bulkley and Power-law Models. Appl. Rheol. 28 (2018) 54515.

Torsvik, A.; Myrseth, V.; Opedal, N.; Lund, B.; Saasen, A.; Ytrehus, J.D. Rheological Comparison of Bentonite Based and KCl/Polymer Based Drilling Fluids. Annu. Trans. Nord. Rheol. Soc.

Spalvins, T. Lubrication with Sputtered MoS2 Films: Principles, Operation, and Limitations. Journal of Materials Engineering and Performance Volume 1 (3) June 1992 p. 347-352

https://doi.org/10.1007/BF02652388

Anoop P.S.; Ravi K.D.; Amit S. Influence of nanoparticles on the performance parameters of lube oil- a review. Mater. Res. Express 8 (2021) 102001

https://doi.org/10.1088/2053-1591/ac2add

Junde G.; Yingxiang Z.; Biao S.; Puchao W.; Zhijie W.; Hao D. Research Progress of Nano Copper Lubricant Additives on Engineering Tribology. Metals 2021, 11(12)

https://doi.org/10.3390/met11122006

Singh, A.; Chauhan, P.; Mamatha, T. A review on tribological performance of lubricants with nanoparticles additives. Mater. Today Proc. 2020, 25, 586-591.

https://doi.org/10.1016/j.matpr.2019.07.245

Bui, B.; Saasen, A.; Maxey, J.; Ozbayoglu, M.E.; Miska, S.Z.; Yu, M.; Takach, N.E. Viscoelastic Properties of Oil-Based Drilling Fluids. Annu. Trans. Nord. Rheol. Soc. 2012, 20, 33-47.

Fernandes, R.R.; Andrade, D.E.V.; Franco, A.T.; Negrão, C.O.R. Correlation between the gel-liquid transition stress and the storage modulus of an oil-based drilling fluid. J. Non-Newton. Fluid Mech. 2016, 231, 6-10.

https://doi.org/10.1016/j.jnnfm.2016.02.003

Das, S.K.; Choi, S.U.; Patel, H.E. Heat transfer in nanofluids-A review. Heat Transf. Eng. 2006, 27, 3-19

https://doi.org/10.1080/01457630600904593

Koo,J.; Kleinstreuer, C. A new thermal conductivity model for nanofluids. J. Nanoparticle Res., 6 (2004), pp. 577-588

https://doi.org/10.1007/s11051-004-3170-5

Jang, S.P.; Choi, S.U.S. . Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett., 84 (2004), pp. 4316-4318

https://doi.org/10.1063/1.1756684

Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res., 5 (2003), pp. 167-171

https://doi.org/10.1023/A:1024438603801

Xie, H.Q.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture Int. J. Heat Mass Transf., 48 (2005), pp. 2926-2932

https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.040

Xuan, Y.; Li, Q.; Hu, W. Aggregation structure and thermal conductivity of nanofluids. AIChE J., 49 (2003), pp. 1038-1043

https://doi.org/10.1002/aic.690490420

Yu X., Xinmin L.; Hailing X. Aggregation modeling of the influence of pH on the aggregation of variably charged nanoparticles. Scientific Reports volume 11, Article number: 17386 (2021)

https://doi.org/10.1038/s41598-021-96798-3

van Zanten, R. Electrically Conductive Oil-based Drilling Fluid, United States Patent, US, vol. 8, (2014) 763,695 B2.

Ran G.; Wenlong Y.; Hao D.; Hsiang, S.K.; Zhisheng, L.; Minghua W.; Xiaohe, M.; Yue, L.; and Chunqing, D. Epitaxial titanium nitride microwave resonators: Structural, chemical, electrical, and microwave properties, Phys. Rev. Mater., 2022, 6, 036202.

https://doi.org/10.1103/PhysRevMaterials.6.036202

Lin, K.; Qin, X.; Liu, M.; Xu, X.; Liang, G.; Wu, J.; Feiyu K.; Guohua C.;and Baohua L. Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes, Adv. Funct. Mater., 2019, 29

https://doi.org/10.1002/adfm.201903229

Strømø, S.M. Formulation of New Drilling Fluids and Characterization in HPHT. MSc thesis UiS 2019

Cover

Downloads

Published

2024-05-21