A Cost-effective Determination of Pressure - and Temperature-Dependent Viscosity of Polymers by Linking Conventional Viscosity Data to PVT Data

Authors

DOI:

https://doi.org/10.31265/atnrs.775

Abstract

The viscosity of polymer melts is dependent on various factors such as shear rate, temperature, pressure and molecular structure. High-pressure capillary rheometery (HPCR) can be used to determine viscosity as a function of shear rate and temperature in the shear rate range relevant for injection molding and extrusion processing. Conventional HPCR measurements cannot determine the pressure dependence of viscosity so that it is typically neglected. Particularly at high pressures and low shear rates, the viscosity is therefore underestimated. However, it is possible to determine the pressure dependency using a counter pressure chamber or actively controlled counter pressure viscometer. Nevertheless, these devices are rarely available, and the measuring effort is high compared to conventional measurements. In order to be able to represent the pressure-dependent material behavior and thus improve the accuracy of process simulations in a cost-effective way, the aim of this paper is to use the free volume approach via the coupled equations of state according to Simha and Somcynsky1 to link the temperature and pressure dependence of the melt density to the viscosity. The model was extended according to Utracki and Sedlacek2–4 and applied to true viscosity data at constant shear stresses in the process relevant apparent shear rate range from 1 to 5000 1/s. The necessary viscosity data for the investigated PP and PC at different temperatures in the typical processing range were determined using a conventional HPCR, and a pvT measuring device was used to determine the melt density. The hole fraction as a measure for the free volume is calculated at each shear stress through the coupled equations of state and linked to the true viscosity through error square minimization at the mean pressure in the capillary. This allows for the recalculation of an isobaric viscosity curve at different pressure and temperature levels. For validation of the model viscosities were also measured at various pressure levels using a counter pressure chamber to determine an experimental pressure coefficient. The model results for the investigated materials show a high agreement with the experimentally determined pressure coefficients

Author Biographies

Felix Hanselle

M.Sc.
Paderborn University

Dennis Kleinschmidt

M.Sc.
Paderborn University

Florian Brüning

Paderborn University

References

Simha, R.; Somcynsky, T. On the Statistical Thermodynamics of Spherical and Chain Molecule Fluids. Macromolecules 1969, 2 (4), 342-350.

https://doi.org/10.1021/ma60010a005

Sedlacek, T.; Cermak, R.; Hausnerova, B.; Zatloukal, M.; Boldizar, A.; Saha, P. On PVT and Rheological Measurements of Polymer Melts. International Polymer Processing 2005, 20 (3), 286-295.

https://doi.org/10.3139/217.1890

Utracki, L. A. Pressure dependence of newtonian viscosity. Polym. Eng. Sci. 1983, 23 (8), 446-451.

https://doi.org/10.1002/pen.760230806

Utracki, L. A. A method of computation of the pressure effect on melt viscosity. Polym. Eng. Sci. 1985, 25 (11), 655-668.

https://doi.org/10.1002/pen.760251104

Maxwell, B.; Jung, A. Hydrostatic pressure effect on polymer melt viscosity. Modern Pastics 1957, vol. 35 (no. 3), 174-182.

Barus, C. Note on the Dependence of Viscosity on Pressure and Temperature. Proceedings of the American Academy of Arts and Sciences 1891, 27, 13.

https://doi.org/10.2307/20020462

Couch, M.; Binding, D. High pressure capillary rheometry of polymeric fluids. Polymer 2000, 41 (16), 6323-6334.

https://doi.org/10.1016/S0032-3861(99)00865-4

Goubert, A.; Vermant, J.; Moldenaers, P.; Göttfert, A.; Ernst, B. Comparison of Measurement Techniques for Evaluating the Pressure Dependence of the Viscosity. Applied Rheology 2001, 11 (1), 26-37.

https://doi.org/10.1515/arh-2001-0003

Aho, J.; Syrjälä, S. Measurement of the pressure dependence of viscosity of polymer melts using a back pressure‐regulated capillary rheometer. J. Appl. Polym. Sci. 2010, 117 (2), 1076-1084.

https://doi.org/10.1002/app.31754

Fernández, M.; Muñoz, M. E.; Santamaría, A.; Syrjälä, S.; Aho, J. Determining the pressure dependency of the viscosity using PVT data: A practical alternative for thermoplastics. Polymer Testing 2009, 28 (1), 109-113.

https://doi.org/10.1016/j.polymertesting.2008.09.008

Cardinaels, R.; van Puyvelde, P.; Moldenaers, P. Evaluation and comparison of routes to obtain pressure coefficients from high-pressure capillary rheometry data. Rheol Acta 2007, 46 (4), 495-505.

https://doi.org/10.1007/s00397-006-0148-5

Laun, H. M. Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheol Acta, 2003,42 (4), 295-308.

https://doi.org/10.1007/s00397-002-0291-6

Sedlacek, T.; Zatloukal, M.; Filip, P.; Boldizar, A.; Saha, P. On the effect of pressure on the shear and elongational viscosities of polymer melts. Polym. Eng. Sci. 2004, 44 (7), 1328-1337.

https://doi.org/10.1002/pen.20128

Koran, F.; Dealy, J. M. A high pressure sliding plate rheometer for polymer melts. Journal of Rheology, 1999, 43 (5), 1279-1290.

https://doi.org/10.1122/1.551046

Kadijk, S. E.; van den Brule, B. H. A. A. On the pressure dependency of the viscosity of molten polymers. Polym. Eng. Sci., 1994, 34 (20), 1535-1546.

https://doi.org/10.1002/pen.760342004

Binding, D. M.; Couch, M. A.; Walters, K. The pressure dependence of the shear and elongational properties of polymer melts. Journal of Non-Newtonian Fluid Mechanics, 1998, 79 (2-3), 137-155.

https://doi.org/10.1016/S0377-0257(98)00102-5

Liang, J.-Z. Pressure effect of viscosity for polymer fluids in die flow. Polymer 2001, 42 (8), 3709-3712.

https://doi.org/10.1016/S0032-3861(00)00507-3

Pantani, R.; Sorrentino, A. Pressure Effect on Viscosity for Atactic and Syndiotactic Polystyrene. Polym. Bull. 2005, 54 (4-5), 365-376.

https://doi.org/10.1007/s00289-005-0397-y

Hay, G.; Mackay, M. E.; Awati, K. M.; Park, Y. Pressure and temperature effects in slit rheometry. Journal of Rheology 1999, 43 (5), 1099-1116.

https://doi.org/10.1122/1.551043

Laun, H. M. Polymer melt rheology with a slit die. Rheol Acta 1983, 22 (2), 171-185.

https://doi.org/10.1007/BF01332370

Osswald, T. A.; Rudolph, N. S. Polymer rheology: Fundamentals and applications; Hanser Publications: Cincinnati, 2015.

https://doi.org/10.1007/978-1-56990-523-4

Laun, H. M. Capillary rheometry for polymer melts revisited. Rheol Acta 2004, 43 (5), 509-528.

https://doi.org/10.1007/s00397-004-0387-2

Hausnerova, B.; Sedlacek, T.; Slezak, R.; Saha, P. Pressure-dependent viscosity of powder injection moulding compounds. Rheol Acta 2006, 45 (3), 290-296.

https://doi.org/10.1007/s00397-005-0036-4

Raha, S.; Sharma, H.; Senthilmurugan, M.; Bandyopadhyay, S.; Mukhopadhyay, P. Determination of the pressure dependence of polymer melt viscosity using a combination of oscillatory and capillary rheometer. Polym. Eng. Sci. 2020, 60 (3), 517-523.

https://doi.org/10.1002/pen.25307

Liao, Y.; Hu, Y.; Tan, Y.; Ikeda, K.; Okabe, R.; Wu, R.; Ozaki, R.; Xu, Q. Measurement Techniques and Methods for the Pressure Coefficient of Viscosity of Polymer Melts. Advances in Polymer Technology 2023, 2023, 1-15.

https://doi.org/10.1155/2023/2020247

ISO 11443 Plastics. Determination of the fluidity of plastics using capillary and slit-die rheometers; Beuth Verlag GmbH: Berlin, 2021, 83.080.01 (11443:2021).

Bagley, E. B. End Corrections in the Capillary Flow of Polyethylene. Journal of Applied Physics 1957, 28 (5), 624-627.

https://doi.org/10.1063/1.1722814

Rabinowitsch, B. Über die Viskosität und Elastizität von Solen. Zeitschrift für Physikalische Chemie 1929, 145A (1), 1-26.

https://doi.org/10.1515/zpch-1929-14502

Ehrenstein, G. W., Riedel, G., Trawiel, P., Eds. Praxis der thermischen Analyse von Kunststoffen; C. Hanser: München, 2004.

Simha, R.; Wilson, P. S.; Olabisi, O. Pressure-volume-temperature properties of amorphous polymers: empirical and theoretical predictions. Kolloid-Z.u.Z.Polymere 1973, 251 (6), 402-408.

https://doi.org/10.1007/BF01498686

Utracki, L. A.; Simha, R. Analytical Representation of Solutions to Lattice-Hole Theory. Macromol. Theory Simul. 2001, 10 (1), 17-24.

https://doi.org/10.1002/1521-3919(20010101)10:1<17::AID-MATS17>3.0.CO;2-B

Carreau, P. J. Rheological Equations from Molecular Network Theories. Transactions of the Society of Rheology 1972, 16 (1), 99-127.

https://doi.org/10.1122/1.549276

Sorrentino, A.; Pantani, R. Determination of the effect of pressure on viscosity of an isotactic polypropylene. Polym. Bull. 2013, 70 (7), 2005-2014.

https://doi.org/10.1007/s00289-013-0913-4

Cover

Downloads

Published

2024-05-21